2.2.1.3 Аэробный механизм ресинтеза АТФ.

We use cookies. Read the Privacy and Cookie Policy

2.2.1.3 Аэробный механизм ресинтеза АТФ.

Аэробное окисление является важнейшим источником энергии в организме. Кислородная система ресинтеза АТФ действует при непрерывном поступлении кислорода в структуры мышечных клеток, называемые митохондриями. Для энергетического обеспечения мышечной работы кислородная система в качестве «горючего» может использовать все основные питательные вещества – углеводы, жиры, белки, правда вклад белков в аэробную энергопродукцию мышц настолько мал, что его можно не учитывать. При работе аэробного характера с повышением интенсивности выполнения нагрузки увеличивается количество кислорода, потребляемое мышцами в единицу времени. Так как между скоростью потребления кислорода и мощностью работы аэробного характера существует прямо пропорциональная зависимость, интенсивность аэробной работы можно характеризовать скоростью потребления кислорода. При определённой для каждого человека нагрузке достигается максимально возможная для него скорость потребления кислорода – МПК (максимальное потребление кислорода). Использование энергетических субстратов при аэробном окислении зависит от интенсивности выполняемой работы. Так, при выполнении лёгкой работы (при потреблении кислорода до 50% от МПК) большая часть энергии для сокращающихся мышц образуется за счёт окисления жиров. Если выполняется работа, скорость потребления кислорода при которой составляет более 60% от МПК, значительную часть энергопродукции обеспечивают углеводы. При работах, близких к МПК, подавляющая часть аэробной энергопродукции производится за счёт окисления углеводов.

Из всех углеводов наиболее предпочтительным субстратом окисления является мышечный гликоген. При полном аэробном окислении молекулы гликогена получается в 13 раз больше молекул АТФ, чем при его анаэробном (гликолитическом) окислении. Таким образом, с точки зрения расходования «горючего» аэробная система значительно более эффективна, чем анаэробная гликолитическая, однако, если сравнивать механизмы энергообеспечения по их мощности, т.е. по количеству молекул АТФ, образующихся в единицу времени, то преимущество останется за анаэробным гликолитическим механизмом, так как максимальная мощность энергообразования этой системы примерно в полтора раза выше.[9]. Относительно низкая величина максимальной мощности ресинтеза АТФ посредством аэробного механизма обусловлена тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии, а также их количеством в мышечных клетках. Важное (а в некоторых случаях и определяющее) влияние на протекание аэробных процессов оказывает активность внутримышечных ферментных систем аэробного обмена [20].

Время развёртывания составляет 3-4 минуты (у хорошо тренированных спортсменов может быть около 1 минуты). Такое большое время развёртывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц [11].

Время работы с максимальной мощностью (на уровне МПК) составляет десятки минут, но в связи с тем, что максимальная мощность данного механизма ограничена на уровне 350-450 кал/мин*кг, только за счёт аэробного пути ресинтеза АТФ невозможно выполнение физических нагрузок типа подтягиваний на перекладине.