1.2.1.3 Пространственно-временны́е характеристики

1.2.1.3 Пространственно-временны?е характеристики

Пространственные и временны?е характеристики могут быть разделены только в абстракции. Изменение пространственных координат тела происходит во времени, в свою очередь временны?е характеристики подтягивания измеряются в условиях, когда тело или отдельные его части занимают определённое положение в пространстве или изменяют это положение.

Скорость. Быстроту изменения положения тела спортсмена или отдельных его частей, определяемую отношением перемещения к значению промежутка времени, в течение которого это перемещение произошло, называют скоростью движения.

Движение различных точек тела при подтягивании на перекладине в общем случае происходит по криволинейным траекториям. Кроме того, движение любой точки тела не является равномерным, т.е. скорость этого движения не постоянна во времени, так как перемещение тела за равные промежутки времени может быть различным. В исходном положении скорость тела равна нулю. В фазе подъема туловища скорость тела плавно увеличивается на начальном участке траектории, достигает своего максимального значения где-то в средней ее части, а затем, быстро уменьшаясь, падает до нуля в высшей точке траектории движения. При опускании туловища скорость его движения также непостоянна и зависит как от техники, так и от тактики выполнения упражнения.

В тех случаях, когда имеют дело с неравномерным движением, проще всего воспользоваться понятием так называемой средней скорости движения. Средняя скорость показывает, чему равно перемещение, которое в среднем совершается в единицу времени. Измеряется средняя скорость в метрах в секунду (м/с). Используя понятие средней скорости, мы как бы считаем, что вместо неравномерного движения с изменяющейся скоростью тело спортсмена совершает равномерное движение с постоянной скоростью, равной по величине средней скорости.

Знание средней скорости помогает упростить некоторые расчеты, но не объясняет причину изменения скорости, например, на начальном и конечном участках траектории движения тела при выполнении подтягиваний на перекладине, когда тело в одном случае набирает скорость, а в другом - теряет ее. Можно сказать, что средняя скорость - это во многих случаях удобная, но достаточно условная величина. На самом деле скорость не может измениться скачком (например, молниеносно стать равной 0.6 м/с) - в этом состоит непрерывность механического движения. В каждой точке траектории и в каждый момент времени скорость должна иметь определенное значение. Отметим, что скорость в данный момент времени или в данной точке траектории в механике называют мгновенной скоростью.[6]. И если при равномерном движении мгновенная скорость постоянна по величине (и совпадает со средней скоростью), то при неравномерном движении мгновенная скорость тела непрерывно изменяется.

Ускорение. В том случае, если мгновенная скорость за любые равные промежутки времени изменяется одинаково, движение называют равноускоренным. А величину, равную отношению изменения скорости тела к промежутку времени, в течение которого это изменение произошло, называют ускорением.

При подтягивании на перекладине скорость тела на различных участках траектории за равные промежутки времени может изменяться неодинаково. Это означает, что и ускорения на различных участках траектории будут различны. К тому же на одном и том же участке траектории, но в разных циклах подтягивания, скорость изменения скорости - так еще называют ускорение - также различна. Скорость точек в различных движениях человека может изменяться, увеличиваясь, уменьшаясь или меняя направление. Поэтому и ускорения различают соответственно положительное (при увеличении скорости), отрицательное (при уменьшении скорости) и нормальное, или центростремительное (при изменении только направления скорости) [7].

Рассуждения о скоростях и ускорениях могли бы остаться чисто формальными, приведёнными просто для создания полноты картины, если бы скорость движения тела спортсмена при подтягивании ни на что не влияла. Но это далеко не так. Скорость движения тела спортсмена в фазе подъёма туловища, особенно на участке разгона, оказывает значительное влияние на результат в подтягивании.

Разгон тела на начальном участке фазы подъёма туловища связан с затратами дополнительной энергии, величина которой пропорциональна квадрату набранной скорости, т.е. если скорость подъёма туловища увеличить в 2 раза, энергозатраты на участке разгона возрастут при этом в 4 раза. И хотя с точки зрения механики кинетическая энергия движущегося тела на верхнем участке траектории движения спортсмена без потерь преобразуется в энергию потенциальную, с точки зрения физиологии дополнительная метаболическая энергия к этому моменту уже потрачена и ни во что преобразоваться не может. Поэтому, затратив на разгон тела, например, до двойной скорости в четыре раза больше энергии за то же время, т.е. произведя работу в четыре раза большей мощности, спортсмен вынужден пополнять её запасы в фазе виса в ИП. Но на восстановление потраченной энергии потребуется гораздо больше времени, чем на её «сжигание». Выделение энергии происходит в вынужденном режиме – организм стремится любой ценой обеспечить выполнение предъявленной нагрузки. Восстановление же, образно говоря, идёт как бы в плановом порядке – не спеша и с учётом имеющихся возможностей. Поэтому отдых, необходимый для ресинтеза энергетических субстратов, оказывается намного длительнее, чем выигрыш по времени, полученный в результате увеличения скорости подъёма. Кроме того, при увеличении скорости подъёма изменяется режим энергообеспечения так, что увеличивается доля неэкономичной анаэробной работы. Если же паузы отдыха не будут увеличены и подтягивание будет продолжаться в высоком темпе, недовосстановление будет усугубляться и через некоторое время спортсмен будет вынужден резко снизить темп подтягиваний, что мы и наблюдаем у спортсменов, для которых характерно быстрое начало со взлётами над грифом перекладины по самую грудь. Выполнив за первую минуту 22-25 подтягиваний, спортсмены затем резко останавливаются, увеличивая паузы отдыха до 10-15 секунд, оказываясь перед необходимостью ликвидировать негативные последствия нерационального подтягивания. Но уже поздно.

Уменьшение скорости подъёма сопровождается увеличением длительности статического напряжения мышц, выполняющих подъём туловища. Статическое напряжение при «скользящем» висе на согнутых руках также сопровождается повышенным расходом метаболической энергии, и хотя с физической точки зрения при статическом напряжении мышц механическая работа не производится, физиологическая стоимость такого напряжения пропорциональна времени поддержания статических усилий.

Рисунок 1.13 Зависимость суммарных энергозатрат от скорости подъёма туловища

на участке разгона

Таким образом, как увеличение скорости подъёма, так и её снижение сопровождается повышенным расходом энергии. Следовательно, должна существовать такая скорость, при которой энергозатраты спортсмена в фазе подъёма туловища будут минимальны. Эту скорость будем называть оптимальной.

Поскольку энергозатраты в фазе подъёма туловища пропорциональны квадрату скорости, а энергозатраты мышц, развивающих статическое напряжение обратно пропорциональны скорости, зависимость суммарных энергозатрат от скорости должна иметь минимум в точке, соответствующей оптимальной скорости. Для наглядности взаимосвязь энергозатрат при совместном действии статического напряжения и динамического сокращения мышц в фазе подъёма туловища отражена на графике рисунка 1.13. Очевидно, что оптимальную скорость движения каждый спортсмен должен подобрать самостоятельно на тренировках по субъективным ощущениям.