2.3.2. Механизмы изменения функции скелетных мышц при долговременной адаптации

Систематические спортивные тренировки или обучение трудовым навыкам постепенно увеличивают функциональные возможности двигательного аппарата. Максимальное увеличение силы отдельных мышечных групп в результате тренировок может достигать 200 – 300 %; при более сложных движениях, с вовлечением многих мышечных групп, адаптация дает прирост на 80 – 120 %. Тренировка повышает выносливость при выполнении мышечной работы. Марафонец на соревнованиях может пробежать всю дистанцию со средней скоростью 5 м/с, а здоровый, но не тренированный специально человек не пробежит с такой скоростью и километра. Увеличение силы, скорости и точности движений при выполнении спортивных упражнений или рабочего процесса, которое достигается в результате тренировки, в значительной степени определяется адаптационными изменениями ЦНС. В результате длительной силовой тренировки число участвующих в двигательном акте МЕ, определяющее силу, может возрастать до 90 % и более (при уровне 20 – 35 % до тренировки). В основе этого лежит повышение способности моторных центров в ответ на нагрузку мобилизовывать большее число моторных нейронов.

Нейрофизиологические процессы перестройки моторных центров при адаптации. При физических нагрузках и в процессе тренировки меняется возбудимость структур ретикулярной формации среднего мозга и гиппокампа, которым, наряду с другими структурами подкорки, принадлежит важная роль в двигательной активности. Адаптация к предельным физическим нагрузкам связана с формированием в коре большого мозга систем взаимосвязанной (синхронной и синфазной) активности, являющихся частью функциональной системы управления движениями и обладающих высокой помехоустойчивостью. Во время тренировки растормаживаются ранее заторможенные мотонейроны и увеличивается число МЕ, участвующих в мышечной работе. При формировании адаптации к физическим нагрузкам совершенствование управления скелетными мышцами реализуется на всех уровнях регуляции.

Повышение работоспособности скелетных мышц связано с увеличением массы и мощности структур, обеспечивающих адаптацию к данному конкретному виду мышечной работы. В процессе адаптации к силовым нагрузкам увеличивается масса мышечных волокон – развивается рабочая гипертрофия. Она реализуется за счет утолщения имеющихся волокон, а не за счет их новообразования, хотя имеются данные, свидетельствующие о возможности их гиперплазии при длительной интенсивной тренировке. При адаптации к нагрузкам на выносливость гипертрофия мышц не возникает или развивается в малой степени, если в таких нагрузках присутствует силовой компонент, например в велоспорте и спринте. Успех адаптации на выносливость обеспечивается главным образом за счет увеличения мощности энергообеспечения мышц.

Не во всех волокнах работающих мышц гипертрофия развивается равномерно. Игольная биопсия показала, что длительные нагрузки с подъемом груза, развивающие силу, вызывают наибольшую гипертрофию в волокнах быстрых МЕ и приводят к увеличению их удельной площади до 70 % от исходной.

При адаптации к бегу на длинные и средние дистанции в работающих мышцах не наблюдается гипертрофии. Соотношение «быстрых» и «медленных» волокон в мышцах у таких спортсменов не отличается от соотношения их у нетренированного человека – имеется преобладание «медленных» волокон.

В процессе длительной адаптации повышается мощность системы энергообеспечения скелетных мышц. При тренировке на выносливость увеличивается аэробное энергообразование, связанное с ростом числа митохондрий и активностью митохондриальных ферментов на единицу массы мышцы. В результате подъем аэробной мощности организма сочетается с увеличением способности мышц утилизировать пируват и жирные кислоты.

Также в процессе адаптации к физическим нагрузкам в мышцах увеличивается содержание гликогена в 1,5 – 3 раза, активность гликогенсинтетазы, мощность системы гликогенолиза и гликолиза. Это характерно для адаптации к кратковременным большим силовым нагрузкам. Нагрузка на выносливость приводит к увеличению синтеза митохондриальных белков в большей степени, чем ферментов гликолиза и гликогенолиза, а силовая спринт-нагрузка, напротив, обладает обратным эффектом. Нагрузка на выносливость вызывает повышение синтеза белков митохондрий не только в оксидативных «медленных», но и в «быстрых» волокнах, а силовая нагрузка усиливает синтез ферментов гликолиза не только в «быстрых», но и в «медленных» волокнах. В процессе адаптации в зависимости от нагрузки наблюдается не только преобладание массы волокон одного типа, но и перестройка энергетического метаболизма обоих типов волокон соматических скелетных мышц, приближающая их к миокардиальным.

Рост мощности системы митохондрий в мышцах является решающим условием повышения выносливости тренированного организма и «расширяет» одно из главных звеньев, лимитирующих работоспособность мышц при интенсивной нагрузке. В митохондриях прежде всего увеличивается способность окислительного ресинтеза АТФ. Ограничивающим работоспособность фактором является снижение концентрации АТФ и КрФ в мышцах и неспособность митохондрий использовать пируват, предупреждать его переход в лактат. Накопление же последнего в мышцах и крови является важным элементом возникновения утомления.

В тренированном организме увеличение мощности системы митохондрий в скелетных мышцах значительно превышает рост максимального потребления кислорода (МПК). Усиление выносливости коррелирует с ростом числа митохондрий и оксидативной способности мышц, но не с величиной МПК. В результате тренировки выносливость возрастает в 3 – 5 раз, количество митохондрий и оксидативная способность в скелетных мышцах – в 2 раза, а МПК – только на 10 – 14 %. И если энергетическая «стоимость» работы потребления АТФ при тренированности не меняется, то в тренированном организме в митохондриях в каждой цепи транспорта электронов будет расходоваться в 2 раза меньше кислорода, поскольку их в 2 раза больше в единице массы мышцы, чем в нетренированном. Во-первых, это обусловливает характерное для тренированного организма уменьшение потребления кислорода при выполнении равной работы. Во-вторых, энерговысвобождающие реакции в митохондриях продуцируют свободнорадикальные формы кислорода, причем их количество пропорционально интенсивности потребления кислорода в митохондриях. Свободные радикалы являются повреждающим фактором, так как приводят к активации перекисного окисления липидов (ПОЛ) в тканях. Большие физические нагрузки активируют ПОЛ, интенсивность которого возрастает с ростом нагрузки и мышечной работы. Тренировка на выносливость за счет повышения мощности системы митохондрий способствует снижению свободнорадикального повреждения при интенсивных нагрузках с высоким потреблением кислорода. Увеличение мощности системы митохондрий обеспечивает тренированному организму экономный расход гликогена при нагрузках. В основе этого лежит усиление способности утилизировать при энергообразовании липиды, что подтверждается низким коэффициентом дыхательного обмена при тренированности.

Повышение работоспособности скелетных мышц в результате адаптации к физической нагрузке связано с уменьшением накопления аммиака. В тренированном на выносливость организме накопление аммиака в крови при максимальной нагрузке в 2 – 3 раза меньше, чем в нетренированном, что связано с его интенсивной утилизацией в орнитиновом цикле.

Адаптация к физической нагрузке приводит к изменениям кровоснабжения скелетных мышц, обеспечивает оптимальную доставку кислорода, субстратов и удаление метаболитов. Адаптация характеризуется перераспределением крови в организме при нагрузке, благодаря чему мышечная работа не приводит к резкому снижению кровотока во внутренних органах. У высокотренированных спортсменов при нагрузке снижение притока крови к органам значительно меньше. Это обеспечивается, во-первых, за счет усовершенствования при тренированности центральных механизмов дифференцированной регуляции кровотока, во-вторых, за счет увеличения васкуляризации мышечных волокон и повышения способности мышечной ткани утилизировать кислород из притекающей крови.

Изменение васкуляризации мышц обусловлено открытием коллатеральных сосудов и увеличением количества капилляров в ткани. В тренированных мышцах адаптированных к бегу людей количество капилляров, приходящихся на мышечное волокно, возрастает на 40 % по сравнению с нетренированными. В основе увеличения васкуляризации мышц при адаптации лежит новообразование капилляров.

Увеличение плотности капилляров характерно для адаптации к нагрузкам на выносливость, не приводящим к гипертрофии мышечных волокон. При тренировке силового характера, связанной с кратковременным преодолением большого груза, обычно развивается гипертрофия волокон и плотность капилляров в них уменьшается. При силовой адаптации в мышцах увеличивается содержание гликолитических волокон и энергообеспечение за счет мощности системы гликолиза. Это раскрывает механизм снижения выносливости у силовых спортсменов высокого класса и явление цены адаптации.

Таким образом, в процессе долговременной адаптации к физическим нагрузкам увеличение силы и выносливости организма определяется повышением функциональных возможностей скелетных мышц и аппарата управления двигательными реакциями. Преимущества функционирования мышц тренированного организма обусловлены развитием в процессе тренировки структурных изменений в самих мышцах и в аппарате их регуляции. Такие изменения определяются спецификой мышечной нагрузки, к которой адаптируется организм, и реализуются рабочей гипертрофией мышечных волокон, повышением мощности окислительного и гликолитического ресинтеза АТФ и системы утилизации энергии, увеличением поглощения кислорода из крови. Структурные сдвиги в ЦНС повышают способность мобилизовывать МЕ при нагрузке и совершенствуют межмышечную координацию.

Данный текст является ознакомительным фрагментом.