2.3.1. Факторы, определяющие функцию скелетных мышц при срочной адаптации
Интенсивность и длительность мышечной работы на уровне скелетных мышц определяется тремя основными факторами: числом и типом активируемых МЕ, уровнем биохимических процессов, обеспечивающих образование и утилизацию энергии, а также кровоснабжением, обеспечивающим приток кислорода, субстратов и удаление метаболитов.
Развиваемая мышцей при нагрузке сила зависит от числа активированных МЕ и частоты сокращения. При росте нагрузки, пока она не стала тяжелой, решающим для увеличения силы является число мобилизованных МЕ; затем главным механизмом достижения большей силы становится увеличение частоты импульсации мотонейронов. При этом максимальное число активируемых МЕ и частота их импульсации зависят от состояния регуляторных моторных центров и степени торможения отдельных мотонейронов, определяемых супраспинальной и проприоцептивной активностью. Количество активированных МЕ и развиваемая сила при нагрузке могут лимитироваться способностью центров мобилизовать МЕ в достаточном количестве в соответствующих мышцах. Роль ЦНС в адаптации мышц к нагрузке определяется тем, что при силовых напряжениях в сокращение могут включаться, помимо ответственных за «полезную» силу мышц-агонистов, мышцы-антагонисты, что может как увеличивать, так и снижать развиваемую силу. Степень или отсутствие этого явления зависит от совершенства межмышечной координации, реализующейся также на уровне ЦНС.
У нетренированного человека при адаптации к силовым напряжениям максимальное число вовлеченных в сокращение МЕ составляет 30 – 50 % от имеющихся, у тренированного – возрастает до 80 – 90 % и более, а сила в 2 – 4 раза. Это определяется развитием адаптационных изменений на уровне ЦНС, приводящих к совершенствованию межмышечной координации и повышению способности моторных центров мобилизовать большее число мотонейронов. При выполнении длительных силовых упражнений продолжительность поддержания силы определяется типом МЕ, вовлеченных в сокращение. Возможность увеличения длительности силовых напряжений ограничивается способностью вовлечения в сокращение большего числа медленных МЕ. В пользу этого предположения свидетельствуют данные генетики: оказалось, что у правшей в правой руке (которая у нетренированного человека способна дольше поддерживать напряжение, чем левая) процент содержания «медленных» волокон изначально больше. При максимальной мощности, т. е. работе с частой сменой циклов и со значительным силовым напряжением, выносливость невелика, так как из-за раннего утомления «быстрых» МЕ мышечная деятельность с той же скоростью не может продолжаться более 10 – 30 с. Совершенство адаптации к такой работе зависит (при прочих равных условиях) от организации сменности в работе МЕ преимущественно медленного типа.
Мышечная работа связана со значительным увеличением расхода энергии. Интенсивность и длительность мышечной работы определяются в значительной степени возможностями локализованной в мышечной клетке системы энергообразования.
Центральное место в механизме энергообеспечения мышечных волокон занимает переход АТФ ? АДФ. Когда процесс идет вправо, энергия утилизируется, когда влево – образуется. Нормальное функционирование мышц возможно при наличии баланса в этих переходах. АДФ/АТФ контролирует окислительное фосфорилирование и гликогенолиз по принципу аллостерической обратной связи. Высокая концентрация АТФ ингибирует ключевые ферменты гликогенолиза, цикла трикарбоновых кислот и подавляет сопряжение окисления и фосфорилирования в митохондриях. Увеличение концентрации АДФ обладает противоположным действием. Если процесс идет в условиях дефицита кислорода, АДФ рефосфорилируется в АТФ с помощью КрФ или в процессе гликогенолиза и гликолиза с образованием лактата. В аэробных условиях АДФ рефосфорилируется в АТФ в ходе окислительного фосфорилирования в митохондриях при использовании гликогена, глюкозы или СЖК. Последние вносят значительный вклад в энергообразование в аэробных условиях, поступая в цикл трикарбоновых кислот. Аминокислоты после дезаминирования могут вступать в этот цикл через пируват и ацетил-коэнзим А и полностью окисляться. Однако в качестве источника энергии для мышечной работы окисление белков в норме играет весьма ограниченную роль, которая возрастает при изнуряющих тяжелых нагрузках.
При нагрузке в скелетных мышцах быстро снижается содержание АТФ и КрФ, возрастает окислительный ресинтез АТФ и потребление кислорода, активируется гликогенолиз и гликолиз, что сопровождается падением уровня гликогена и ростом пирувата и лактата. В работающих мышцах снижается содержание гликогена, увеличивается концентрация глюкозы и глюкозо-6-фосфата, что свидетельствует о высоком уровне гликогенолиза. Важной чертой энергетического метаболизма мышц при нагрузке в нетренированном организме является преобладание интенсивности гликогенолиза и гликолиза над интенсивностью аэробных процессов, нарастающее при увеличении интенсивности работы и достигающее максимума при утомлении.
Снижение концентрации АТФ и КрФ в мышцах не является фактором, лимитирующим работу мышц, так как степень сдвига одинакова при работе умеренной интенсивности без утомления и при утомлении от максимальной нагрузки. Развитие утомления и «отказ» возникают во время работы с разной интенсивностью при одной и той же концентрации лактата в мышце и крови. Звено, лимитирующее работоспособность мышцы, формируется в связи с активацией гликолиза и определяется способностью митохондриальной системы утилизировать пируват: чем выше эта способность, тем меньше пирувата перейдет в лактат и тем меньше лактата накопится в мышцах и крови. Таким образом, мощность системы митохондрий скелетной мышцы является звеном, ограничивающим интенсивность и длительность работы.
Механизм, через который накопление лактата сдерживает работоспособность мышц, сложен. Существенное место в нем занимает действие лактата и увеличение концентрации Н+ на процессы окислительного ресинтеза АТФ в митохондриях. Лактат и снижение рН переключают окисление НАДН на так называемый внешний путь, в результате чего увеличивается свободное окисление, теплопродукция и снижается эффективность использования кислорода и субстратов в мышцах. Угнетающее действие лактата на функцию митохондрий связано также с тем, что вызываемый им ацидоз способствует переходу из саркоплазмы и накоплению Са2+ в митохондриях мышечных волокон и может привести к разобщению окисления с фосфорилированием.
Другой возможный механизм действия лактата, лимитирующий работоспособность мышц, связывают с влиянием ацидоза на процесс сокращения. Избыток ионов водорода – конкурента Ca2+ за взаимодействия с тропонином миофибрилл – уменьшает образование комплексов «Са2+ – тропонин» и препятствует формированию достаточного количества актомиозиновых «мостиков», определяющих силу сокращения.
К факторам, ограничивающим работоспособность мышц при интенсивной работе, относят концентрацию аммиака в них и крови. Аммиак, образующийся в мышце при сокращении, при интенсивной работе накапливается в значительных количествах и может угнетающе действовать на мышцу и, попадая в кровь и мозг, оказывать токсическое действие на ЦНС. В мышце аммиак вызывает угнетение сократительного процесса за счет прямого действия на волокна. Опосредованно он влияет на образование лактата в результате потенцирующего эффекта. Действие аммиака как фактора утомления приводит к угнетению моторных центров.
Ограничивать работоспособность мышц может АТФазная активность миозина, реализующая утилизацию энергии сократительным механизмом. Развитие утомления при нагрузке у неадаптированных животных положительно коррелирует со снижением АТФазной активности миозина в работающих мышцах. В результате тренировки повышение выносливости работающих мышц сопровождается повышением активности АТФазы миозина.
Адекватное кровоснабжение мышц – важнейший фактор, определяющий работоспособность. При мышечной работе увеличиваются потребности мышцы в кислороде, притоке субстратов, выведении углекислого газа и других метаболитов, нормализации температуры, гидратации и т. д. Объемный кровоток в скелетных мышцах при физической нагрузке может возрастать в 10 – 20 раз и составлять до 80 % минутного объема кровообращения против 15 % в покое.
Увеличение притока крови к скелетным мышцам при нагрузке – физиологическое явление. При сильных и максимальных сокращениях в мышцах достигается давление, превышающее артериальное, и кровоток прекращается. Адекватное кровоснабжение при нагрузке обеспечивается в зависимости от интенсивности и длительности мышечной работы за счет трех основных факторов: 1) перераспределения кровотока между работающими и неработающими мышцами и другими органами; 2) увеличения объемного кровотока в мышцах во время сокращения (рабочая функциональная гиперемия); 3) увеличения кровотока сразу после сокращения (постконтракционная гиперемия).
Перераспределение крови в организме при мышечной работе осуществляется под контролем ЦНС путем усиления констрикторного влияния адренергической регуляции на сосуды кожи и внутренних органов и усиления дилататорного влияния холинергической регуляции на сосуды работающих мышц. Кровоток в них зависит от интенсивности работы. Выявлено, что пока развиваемое мышцей напряжение составляет от 5 до 10 % максимального произвольного сокращения, объемный кровоток возрастает пропорционально силе сокращения во время нагрузки и после завершения сокращений снижается до исходного уровня в течение минуты. При нагрузке, вызывающей сокращения величиной 10 – 20 % от максимального уровня, циркуляция в работающих мышцах во время сокращения возрастает довольно незначительно, но быстро увеличивается сразу после сокращения, т. е. наблюдается «долг по крови», напоминающий «кислородный долг». При напряжениях, превышающих в среднем 20 – 30 % максимального уровня для одних мышц и 50 – 70 % для других, кровоток во время сокращения прекращается, но после его завершения возрастает тем больше, чем выше было напряжение мышцы при нагрузке.
Ограничение кровотока в работающих мышцах при интенсивных сокращениях способствует накоплению в мышцах лактата и развитию утомления. При произвольных сокращениях с силой выше 20 % от максимальной накопление лактата растет линейно с ростом силы. Наибольших значений накопление лактата достигает при усилиях, равных 30 – 60 % от наивысшего уровня. Мышечную работу можно осуществлять довольно долго, если развиваемое напряжение не будет превосходить уровень 10 – 20 % от максимального, т. е. в условиях, когда кровоток может возрастать во время работы.
Возможность адекватного увеличения кровотока при нагрузке в значительной мере определяется степенью васкуляризации МЕ – общей плотностью капилляров на единицу объема мышцы. Значение васкуляризации для работоспособности мышц подтверждают также данные о более высокой плотности капилляров в медленных волокнах. Для увеличения объемного кровотока в мышце при нагрузке значение имеет плотность функционирующих капилляров. Кровоснабжение мышцы является одним из звеньев, лимитирующих работоспособность при физической нагрузке.
Данный текст является ознакомительным фрагментом.