Немного истории

We use cookies. Read the Privacy and Cookie Policy

Немного истории

Трудно сказать, когда людям впервые пришла в голову мысль стабилизировать метаемые снаряды, придав им осевое вращение. Историки оружия датируют появление первых нарезных стволов концом XV – началом XVI веков. Приоритет в этой области отдается Гаспару Цольнеру, оружейнику из Вены. С тех давних времён нарезные ружья мирно сосуществуют с гладкоствольными на протяжении более чем 300 лет. Сам по себе факт весьма любопытен, хотя и легко объясним. Несмотря на явное превосходство нарезного оружия в точности боя, во многих других отношениях оно заметно проигрывало гладкоствальному. Во-первых, производство винтовки было существенно дороже; во-вторых, винтовка была сложнее в заряжании и уступала гладкому ружью в скорострельности в 5-6 раз! А главное, при равном калибре процентов на двадцать уступали гладким стволам в мощности. Заряд пороха приходилось ограничивать во избежание срыва сферической пули с нарезов. Именно безраздельное господство круглой сферической пули и объясняет тот факт, что полезные свойства винтовых нарезов в канале ствола не были в полной мере востребованы на протяжении нескольких столетий.

Кстати, о самих нарезах… Весьма различные по форме, глубине и количеству, они имели одно общее свойство – взятый совершенно произвольно и, как правило, весьма пологий шаг. Универсальная сферическая пуля была вполне терпима к крутизне нарезов. Её полёт одинаково легко стабилизировался и нарезами с шагом в 500 мм, и в 1 000, и в 1 500, а иногда и больше. Отдельные образцы оружия отличались завидной кучностью боя даже на дистанции 200 м.

Положение дел круто изменилось в начале XIX столетия в связи с началом широкого использования удлинённых конических пуль. Бурное развитие естественных наук впервые позволило взглянуть на огнестрельное оружие с научной точки зрения и сформировать основные понятия внутренней и внешней баллистики. Хотя в основном развитие технической мысли по-прежнему шло путём эксперимента, методом проб и ошибок. Было очевидно, что удлинённая пуля (имеющая, как бы мы сказали сегодня, большую поперечную нагрузку) намного медленнее теряет скорость, а следовательно, лучше сохраняет энергию и обладает большей пробивной способностью по сравнению со сферической. Так, потеря скорости для сферической пули калибра .45 на дистанции 100 м составляет почти 50%, а потери энергии, соответственно, 75%. Для меньших калибров потери ещё больше. Коническая пуля с удлинением 1:2 на той же дистанции теряла лишь 20% скорости и 36% энергии.

Проблема заключалась в том, что по мере увеличения массы пули при постоянном калибре стабильность её полёта начинала резко падать. Прийти к научному пониманию взаимосвязи угловой скорости пули с её массой (а фактически со степенью её удлинения, как мы увидим позднее) для сохранения стабильности полёта не удавалось вплоть до середины XIX века. Так, в Крымскую войну, несмотря на повсеместное введение нарезного оружия в армиях Великобритании и Франции, проблема стабилизации удлинённых пуль так и не была решена. Великий русский хирург Пирогов, принимавший непосредственное участие в боевых действиях, свидетельствует, что процент ранений нестабилизированными кувыркающимися пулями был весьма высок. Такие ранения Пирогов называл ужасными. Вместе с тем, никто уже не сомневался в том, что добрая, старая шаровая пуля стала достоянием истории.

Первым человеком, предложившим математическую формулу, увязывающую скорость вращения с удлинением пули, был профессор математики Сэр Альфред Гринхил (Greenhill). Это случилось в 1879 г. В те годы определение скорости приборным способом представляло весьма непростую техническую задачу, поэтому формула, предложенная Гринхилом, устанавливала связь не с частотой вращения пули, а с крутизной шага нарезов. Выглядела формула Гринхила так:

Длина шага нарезов (в калибрах) = 150 /длина пули (в калибрах).

Рассмотрим пример: пуля калибра .45-70 имеет длину 26 мм при калибре 11,6 мм. Удлинение пули составляет 26:11,6 =2,24. Тогда минимальная длина шага нарезов составит 150:2,24, т.е. 67 калибров, что для калибра 11,6 мм составит 67х11,6=776 мм, т.е. около 30 дюймов.

При меньшей длине шага нарезов пуля такого удлинения будет стабилизирована, при большей – нет.

Выведенная эмпирически, формула Гринхила была справедлива лишь для пуль больших калибров (выше .30), невысоких скоростей (до 500 м/сек) и для свинцовых пуль. Для меньших калибров и более высоких скоростей формула Гринхила будет давать завышенные показатели крутизны нарезов (короче, чем реально необходимо). И все-таки, это был прорыв! Связь между удлинением пули и необходимой скоростью вращения была установлена.

Формула Гринхилла удовлетворяет двум пулям калибра .45, изображённым справа, условно справедлива для пули .308 калибра (в центре), и не применима для пуль калибра .224