Двигательная гипоксия
Двигательная гипоксия
Двигательная гипоксия (кислородная недостаточность), развивающаяся при напряженной мышечной деятельности, в результате которой организм не способен полностью обеспечить кислородом участвующие и не участвующие в этой деятельности тканевые структуры, является величиной непостоянной. При тренировке лошадей степень двигательной гипоксии может быть целенаправленно изменена, а следовательно, есть возможность управления этим процессом. Последнее позволяет использовать двигательную гипоксию как естественный раздражитель, стимулирующий изменения в организме, ведущие к расширению функциональных возможностей и повышению работоспособности животных.
Повышенная потребность в кислороде при работе вследствие увеличенного расхода энергии в первую очередь удовлетворяется за счет изменения функции внешнего дыхания, которая направлена на поддержание постоянного уровня напряжения кислорода в альвеолярном воздухе и артериальной крови.
К показателям деятельности дыхательной системы относятся частота и глубина дыхания. Они определяют величину минутного объема легочной вентиляции, которая зависит от вида мышечной деятельности и от ее интенсивности.
Еще в 60-е годы прошлого века были получены данные о величине легочной вентиляции у лошадей при интенсивной нагрузке. Если в состоянии покоя минутный объем дыхания составляет 60-100 л, то во время резвой рыси (10,8 м/с) или галопа (11,7 м/с) он может превышать 2000 л. Значительное повышение легочной вентиляции соответственно сопровождается ростом потребления кислорода в 50–60 раз по сравнению с данными в состоянии покоя.
Вследствие несоответствия между кислородным запросом и фактическим потреблением кислорода в процессе интенсивной мышечной деятельности образуется кислородный долг, величина которого может являться определенным показателем развития двигательной гипоксии. Однако кислородный долг ввиду преимущественной связи с анаэробным энергообразованием не может в полной мере характеризовать уровень двигательной гипоксии. Она зависит также от развития кислородтранспортных систем и возможностей окислительно-восстановительного метаболизма клеточных и тканевых структур.
Исследование реакции на мышечную нагрузку систем дыхания, кровообращения, крови, а также характера тканевого метаболизма позволяет получить более полное представление как о развитии кислородной недостаточности, так и об адаптационных возможностях организма.
При интенсивных мышечных напряжениях у лошадей происходят значительные изменения в крови: повышается количество эритроцитов, лейкоцитов и гемоглобина. Увеличение эритроцитов при мышечной работе ведет к повышению «дыхательной» поверхности крови, а значит, и ее кислородтранспортной функции. При этом большую работоспособность проявляли лошади с наиболее выраженным увеличением эритроцитов.
Сдвиги показателей крови зависят от интенсивности мышечной нагрузки и наиболее выражены при пробегах и скачках, а не при дозированной работе средней мощности. Интенсивная мышечная нагрузка, сопровождающаяся развитием кислородной недостаточности, вызывает значительные изменения эритропоэтической (образование эритроцитов) и эритрорезервной (выход эритроцитов из депо) функции.
Наряду с отмеченными изменениями под влиянием работы мышц установлены также различные сдвиги физико-химических показателей крови лошадей – резервной щелочности, содержания сахара, фосфора, белковых фракций.
Во время мышечной деятельности сердечно-сосудистая система обеспечивает необходимый кровоток. В системе кровообращения происходят сдвиги, соответствующие повышенному энергетическому обмену, в связи с чем изменения сердечной деятельности являются важнейшим элементом, определяющим перенос кислорода к тканям организма. Таким образом, роль кровообращения в организме определяется возможностями удерживать количество кислорода, доставляемое за единицу времени артериальной кровью тканям на уровне, адекватном потреблению кислорода в данный момент.
Один из показателей функционального состояния сердечно-сосудистой системы – изменение частоты пульса, которая отражает деятельность сердца и характеризует уровень адаптации организма. Тренированный организм имеет в покое меньшее число сердечных сокращений, чем нетренированный. Степень снижения частоты пульса, являющаяся результатом функциональных и морфологических изменений в организме, зависит от интенсивности мышечных нагрузок и длительности спортивной эксплуатации лошади.
При мышечной работе частота сердцебиений увеличивается, причем чем интенсивней работа, тем интенсивнее происходит нарастание частоты сердцебиений.
Многие исследователи наблюдали у лошадей увеличение частоты пульса после напряженной мышечной работы до 98-130 ударов в минуту, в то время как в покое она составляла 24–40 ударов в минуту.
Наблюдались более высокие пределы максимального увеличения частоты пульса после интенсивной работы (180-2 20 ударов в минуту). Непосредственно во время работы частота пульса у лошадей достигает 240–260 ударов в минуту.
При восстановлении частоты пульса после работы можно отметить две фазы. Первая – тотчас после окончания работы, характеризуется крутым падением частоты сердцебиений в течение примерно одной-двух минут. Во второй фазе происходит постепенное снижение частоты сердечных сокращений до исходного уровня. Продолжительность восстановления частоты пульса обычно тем больше, чем интенсивнее была работа.
Скорость восстановления нормальной деятельности сердца у лошадей зависит не только от характера и напряжения производимой работы, но и от индивидуальных особенностей нервной регуляции. В связи с этим можно предполагать, что очень медленное восстановление частоты пульса является показателем недостаточной приспособленности сердечно-сосудистой системы и регуляторных механизмов к условиям работы, характеризующейся крайне высоким уровнем потребления кислорода.
При сердечных сокращениях образующееся давление обеспечивает продвижение крови по сети артериальных сосудов. Различают систолическое, или максимальное, диастолическое, или минимальное, среднее и пульсовое давление.
Значительные изменения артериального давления при мышечной работе отражают характер деятельности сердечно-сосудистой системы.
Неоднократно отмечалось, что по мере адаптации к мышечной работе показатели артериального давления в состоянии относительного покоя снижаются. Вместе с тем отмечено, что высокотренированный организм при интенсивной нагрузке дает большие физиологические сдвиги. Несмотря на то, что максимальное артериальное давление может достигать высоких пределов (180 мм рт. ст. и более), восстановительный период в результате тренировок заметно укорачивается.
Артериальное давление у лошадей, как правило, измеряется в хвостовой артерии и составляет: 85-120 мм рт. ст. максимальное давление и 45–65 мм рт. ст. – минимальное. После мышечной нагрузки у лошадей в большинстве случаев отмечается увеличение показателей максимального давления на 25–80 мм рт. ст. и минимального на 10–20 мм рт. ст.
Повышение показателей артериального давления после физической нагрузки объясняется усилением работы сердца и изменением тонуса артерий. Динамика артериального кровяного давления играет важную роль при изучении адаптации организма лошади к напряженной мышечной работе, так как она в определенной степени характеризует потенциальные возможности кислородтранспортной системы организма.
Одним из показателей приспособления функций сердечно-сосудистой системы к повышенному потреблению кислорода организмом служит величина систолического и минутного объемов сердца. Во время мышечной деятельности у лошадей систолический объем может увеличиваться в 2–3 раза, а минутный – в 10–25 раз.
Известно, что важным свойством капиллярной системы является непостоянство ее емкости. При работе происходит включение капилляров, не наполненных кровью в покое. Количество функционирующих капилляров в мышцах во время работы может увеличиваться в 10 раз и более, создавая оптимальные условия для быстрейшего перехода кислорода из крови в мышечную ткань.
При достаточном кровоснабжении работающих мышц степень насыщения (оксигенация) кислородом оттекающей венозной крови не должна снижаться по сравнению с состоянием покоя, тем более, что скорость течения крови при этом увеличивается и время контакта протекающей крови с мышечной тканью уменьшается. При недостаточном кровоснабжении оксигенация венозной крови может резко падать.
Зависимость величины кислородного долга и оксигенации венозной крови обусловлена тесной связью между анаэробным и аэробным энергообразованием. Продукты гликолиза являются субстратом окисления непосредственно во время мышечной деятельности, что при недостаточной доставке кислорода к тканям приводит к усиленной деоксигенации крови. При этом наибольшая кислородная недостаточность у лошадей образуется при повторных работах с максимальной нагрузкой.
Известно, что после утомления изменение работоспособности имеет фазный характер – фаза пониженной работоспособности, фаза восстановления ее и фаза повышенной работоспособности. При этом последняя фаза после нагрузки максимальной интенсивности наступает ранее, чем восстанавливаются деятельность сердца, дыхания и биохимические показатели крови. Однако при многократных интенсивных нагрузках после второго и последующих повторений многие исследователи не отмечали фазы повышенной работоспособности, в связи с чем в их опытах результаты работы третьих и последующих попыток, даже через значительный интервал отдыха (30–60 минут), как правило, не превышали показатели первых двух попыток.
Исследования на верховых лошадях при трехкратной нагрузке максимальной интенсивности выявили определенную закономерность изменения оксигенации венозной крови, что в более полной мере вскрывает механизм вышеуказанной динамики работоспособности.
Всадники на подопытных лошадях с предельной резвостью преодолевали подъем крутизной до 20–25° на дистанции 200 м. Интервал отдыха между повторными мышечными нагрузками равнялся 10 минутам. Выполнение первой нагрузки вызывало у лошадей значительное увеличение частоты пульса и дыхания и повышение оксигенации венозной крови. Повторное преодоление дистанции во всех случаях было резвее и также сопровождалось значительными сдвигами частоты пульса и дыхания. Насыщение кислородом венозной крови при этом снижалось. И, наконец, при выполнении третьей нагрузки, при крайних сдвигах частоты пульса и дыхания, наблюдали значительное снижение насыщения кислородом венозной крови и падение работоспособности.
Улучшение резвости при повторном выполнении нагрузки можно объяснить фазой повышенной работоспособности, характеризующейся более высокими функциональными возможностями организма. Повышение оксигенации венозной крови при выполнении первоначальной нагрузки свидетельствует об избыточном обеспечении организма кислородом, которое образуется не только в результате активного развертывания кислородтранспортных систем, но и, вероятно, за счет преимущественного течения весьма лабильных анаэробных процессов.
На фоне высокой обеспеченности организма кислородом (сверхкомпенсация) создаются условия для совершения, после короткого интервала отдыха, более интенсивной работы, что и наблюдается при повторном выполнении нагрузки. Однако повторная предельная нагрузка ведет к снижению оксигенации венозной крови, свидетельствующему о крайне высоком уровне окислительных процессов и об исчерпанных компенсаторных возможностях кислородтранспортных систем.
Работоспособность при недостаточной обеспеченности организма кислородом, несомненно, снижается, что и наблюдается при третьем выполнении предельной нагрузки, сопровождающейся еще большим падением оксигенации венозной крови. Следовательно, падение оксигенации венозной крови является показателем развития двигательной гипоксии и снижения резервных возможностей организма, обеспечивающих работоспособность в данный момент.
Следует полагать, что при многократных повторениях мышечной работы сохранение на должном уровне работоспособности после второй и последующих максимальных нагрузок возможно лишь при возвращении к исходному уровню не только клинических показателей, но и при полном восстановлении кислородного баланса, энергетического обмена и координационных функций в организме.
Таким образом, развитие двигательной гипоксии и адаптации организма к ней может характеризоваться изменением уровня кислородного долга, показателей биохимических процессов, оксигенации венозной крови, а также динамикой компенсаторных реакций кислородтранспортных систем.
Данный текст является ознакомительным фрагментом.