Оценка систем энергообеспечения организма

We use cookies. Read the Privacy and Cookie Policy

Оценка систем энергообеспечения организма

Оценка креатинфосфокиназного механизма энергообеспечения

1. Уровень креатинфосфата в мышцах. Активность КФК.

В тренированном организме эти показатели значительно выше, что свидетельствует о повышении возможностей креатинфосфокиназного (алактатного) механизма энергообразования. Тяжелый, высокоинтенсивный тренинг приводит к дефициту фосфоркреатина, увеличению в крови содержания продуктов обмена креатинфосфата и развитию физического утомления.

2. Количество неорганического фосфата в крови.

По изменению его концентрации в крови можно судить о мощности креатинфосфокиназного механизма энергообеспечения и уровне тренированности.

3. Уровень креатина и креатинина в моче.

Обнаружение креатина в моче используется как тест для выявления перетренировки и патологических изменений в мышцах или внутренних органах.

Оценка гликолитического механизма энергообеспечения

1. Максимальное накопление лактата и пирувата в крови при максимальных физических нагрузках (более поздний выход на максимальное количество лактата в крови при предельных физических нагрузках, а также более высокий его уровень). Исследование уровня молочной кислоты имеет значение для определения ПАНО и при нагрузках анаэробного характера.

2. Значение рН крови и показатели кислотно-щелочного состояния крови (по изменению показателей КОС можно контролировать реакцию организма на физическую нагрузку. Наиболее информативным показателем КОС является величина BE — щелочного резерва, который с повышением квалификации увеличивается).

3. Содержание глюкозы и инсулина в крови (повышение активности гликолитических ферментов).

4. Активность ферментов лактатдегидрогеназы (ЛДГ), фосфорилазы.

Оценка аэробного механизма энергообеспечения

Физическая нагрузка повышает потребность организма в кислороде (рО2), что удовлетворяется:

1. Увеличением скорости кровотока, количества гемоглобина за счет увеличения общей массы крови. Отражают адаптацию организма к физическим нагрузкам.

2. Возрастанием гемоглобина, гематокрита. Это увеличивает способность крови транспортировать кислород к тканям. Оценивается состояние кровообращения в микроциркуляторном русле и определяются факторы, затрудняющие доставку кислорода в ткани.

3. Повышением уровня железа, снижением ферритина (мобилизация из депо) и повышением трансферина.

4. Увеличением концентрации креатина в эритроцитах (специфический признак гипоксии, свидетельствующий также и об увеличении числа молодых клеток, то есть о стимуляции эритропоэза).

5. Усилением липидного метаболизма, активизацией перекисного окисления липидов (ПОЛ).

6. Повышением уровня триглицеридов и жирных кислот.

Оценка степени тренированности спортсмена

У тренированных спортсменов высокая адаптированность к физической нагрузке проявляется в следующих показателях:

• меньшим (по сравнению с нетренированными) накоплением молочной кислоты при выполнении стандартной нагрузки, что связано с увеличением доли аэробных механизмов в энергообеспечении;

• меньшим увеличением содержания лактата в крови при возрастании мощности работы;

• более высокой скоростью утилизации лактата в период восстановления после физической нагрузки;

• большем увеличении общей массы крови и концентрации гемоглобина;

• меньшим снижением глюкозы после интенсивной физической нагрузки;

• большим приростом неорганического фосфата в крови при выполнении анаэробной физической работы;

• большим повышением КФК, ЛДГ в тренированном организме, что выявляет увеличение креатинфосфата в мышцах, иногда в 2–2,5 раза (алактатный механизм энергообразования).

Данный текст является ознакомительным фрагментом.