2.1. Системный структурный след как основа адаптации. Взаимосвязь функции и генетического аппарата

We use cookies. Read the Privacy and Cookie Policy

Физическая нагрузка – самый естественный и древний фактор, воздействующий на человека. Этот фактор, обусловленный природой земной гравитации, во все времена сопровождал человека, и двигательная мышечная активность всегда была важным звеном приспособления человека к окружающему миру.

Проблема адаптации к нагрузкам сводится к вопросу о механизмах, обеспечивающих преимущества тренированному организму. Сама адаптация характеризуется двумя основными чертами.

1. Тренированный организм может выполнять мышечную работу такой продолжительности или интенсивности, которая не под силу нетренированному. Так, нетренированный человек не в состоянии пробежать марафонскую дистанцию или поднять штангу весом, значительно превышающим его собственный. При выполнении стандартной работы, доступной нетренированному человеку, тренированный может совершать ее более длительное время без утомления или выполнить с такой скоростью, на которую не способен нетренированный человек.

2. Тренированный организм характеризуется более экономным функционированием физиологических систем в покое и при умеренных нагрузках, а также способностью достигать при максимальных нагрузках такого уровня функционирования этих систем, который недостижим для нетренированного человека. Так, в условии покоя у тренированных людей частота сердцебиений может составлять 30 – 50 уд/мин («брадикардия атлетов»), у них уменьшена частота дыхания до 8 – 15 дых/мин, снижены легочная вентиляция и минутный объем дыхания на 10 – 12 %, также в покое уменьшено потребление кислорода миокардом.

Выполнение стандартной мышечной работы сопровождается у тренированного организма существенно меньшим повышением уровня лактата в крови, что способствует предупреждению утомления и повышению работоспособности. Реакция же симпатоадреналовой системы и повышение уровня катехоламинов в крови в ответ на нагрузки значительно меньше. Таким образом, при выполнении одинаковой по интенсивности работы тренированный организм работает более экономно, с меньшей мобилизацией физиологических функций.

При предельно напряженной работе наблюдается обратное: в тренированном организме происходит б?льшая мобилизация сердечно-сосудистой, дыхательной систем по сравнению с нетренированным. Так, при максимальной работе потребление кислорода у тренированного человека может возрастать до 5 – 6 л/мин, а у нетренированного не превышает 3 л/мин; минутный объем сердца повышается до 45 – 47 л/мин, ударный объем – до 200 мл, тогда как у нетренированного максимальное значение этих показателей 20 – 25 л/мин и 140 – 145 мл соответственно; легочная вентиляция может достигать 150 л/мин, а частота дыхания – 60 дых/мин. В ответ на предельные нагрузки у тренированных людей наблюдается более мощная реакция симпатоадреналовой системы, чем у нетренированных.

Рассмотренные различия наглядно демонстрируют, что при малых нагрузках, когда выполняется работа, одинаково легкая для тренированного и нетренированного человека, различий в физиологических сдвигах почти нет. При более интенсивной работе у нетренированного происходят бьльшие физиологические сдвиги, чем у тренированного, с ростом нагрузки различия увеличиваются. Тренированный может совершать работу, по интенсивности значительно превышающую ту, которая для нетренированного является предельной. При этом соответственно физиологические сдвиги у него продолжают расти. Наконец, достигается предельная интенсивность работы и для тренированного, в этот момент регистрируются его максимальные функциональные сдвиги, которые лежат значительно выше предельных сдвигов у нетренированного.

Для понимания механизма адаптации к физическим нагрузкам с позиций молекулярной физиологии существенно, что в процессе развития адаптации к любому фактору среды, и, в частности, к физическим нагрузкам, определяются два основных этапа: срочная, но несовершенная адаптация и долговременная устойчивая адаптация.

Во всех случаях срочная адаптация реализуется мгновенно, но реакция организма протекает на пределе, с утратой резервов, низким результатом и сопровождается выраженной стресс-реакцией. Устойчивая долговременная адаптация характеризуется более совершенной реакцией организма, отсутствием выраженной стресс-реакции и возможностью нормальной жизнедеятельности.

На этапе срочной адаптации основная двигательная реакция организма сопровождается ярко выраженной стресс-реакцией с избыточным высвобождением в кровь катехоламинов, кортикостероидов и т. д., максимальным увеличением легочной вентиляции, минутного объема сердца, уровня лактата и аммиака в крови, выраженными повреждениями клеточных мембран, проявляющимися ферментемией. В результате скорость реакции организма снижается, и он оказывается неспособным осуществлять длительную мышечную работу. Развивающаяся в дальнейшем долговременная адаптация характеризуется тем, что в ответ на ту же самую нагрузку не возникает резкой стресс-реакции, и мышечная работа сопровождается умеренными значениями тех же показателей. В результате становится возможным длительное стабильное выполнение работы.

Какой процесс, протекающий в организме, «расширяет» при развитии тренированности звенья, лимитирующие на этапе срочной адаптации интенсивность и длительность работы? Что лежит в основе перехода срочной несовершенной адаптации в долговременную и устойчивую?

В ответ на нагрузку, создаваемую факторами среды, в клетках органов и тканей, на которые непосредственно падает нагрузка, закономерно активируется синтез нуклеиновых кислот и белков, который приводит к избирательному росту клеточных структур, лимитирующих физиологическую мощность системы, ответственной за реализацию адаптации к данному фактору среды. В результате функциональные возможности системы возрастают, срочная адаптация переходит в долговременную.

Такое развитие процессов реализуетсяивходеадаптации к физическим нагрузкам. При первоначальном действии любого сигнала, вызывающего интенсивную и длительную двигательную реакцию, в организме формируется обеспечивающая ее функциональная система. При этом в ответ на действие сигнала возникают возбуждение соответствующих центров и активация функции эндокринных желез, приводящие к мобилизации скелетной мускулатуры, а также органов дыхательной и сердечно-сосудистой систем, обеспечивающих энергетический метаболизм работающих мышц. Таким образом, функциональная система, ответственная за адаптацию к физическим нагрузкам, включает в себя афферентное звено – рецепторы, центральное регуляторное звено – центры нейрогормональной регуляции на разных уровнях ЦНС и эффекторное звено – скелетные мышцы, органы дыхания, кровообращения.

Основа адаптации. Увеличение функциональных возможностей систем органов закономерно влечет за собой активацию синтеза нуклеиновых кислот и белков в их клетках. Это приводит к формированию структурных изменений, увеличивающих потенциал систем, ответственных за адаптацию, и составляет основу перехода от срочной адаптации к долговременной. В качестве первого сдвига увеличивается скорость транскрипции рибонуклеиновой кислоты (РНК) на структурных генах дезоксирибонуклеиновой кислоты (ДНК) в ядрах клеток. Увеличение количества информационной РНК приводит к росту программированных этой РНК рибосом и полисом, в которых интенсивно протекает синтез клеточных белков. В результате масса структур возрастает, увеличиваются функциональные возможности клетки – сдвиг, составляющий основу долговременной адаптации.

Активирующее влияние увеличенной функции, опосредованное через механизм внутриклеточной регуляции, адресовано генетическому аппарату. Механизм, через который функция регулирует количественный параметр активности генетического аппарата – скорость транскрипции, обозначается как взаимосвязь между функцией и генетическим аппаратом клетки. Эта взаимосвязь двусторонняя. Прямая связь состоит в том, что генетический аппарат (гены, расположенные в хромосомах ядра) посредством системы РНК обеспечивает синтез белка, т. е. помогает создавать структуры, которые, в свою очередь, влияют на функцию. Обратная связь заключается в том, что интенсивность функционирования структур (количество функции, приходящееся на единицу массы органа) управляет активностью генетического аппарата.

Важная черта гиперфункции органа (гипертрофии сердца при сужении аорты, почки или легкого после удаления парного органа, доли печени после резекции другой доли) состоит в том, что активация синтеза нуклеиновых кислот и белка, возникающая в ближайшие часы и сутки после начала гиперфункции, постепенно прекращается после развития гипертрофии и увеличения массы органа. В начале процесса гиперфункция осуществляется не гипертрофированным органом и увеличение количества функции на единицу массы клеточных структур вызывает активацию генетического аппарата дифференцированных клеток. После полного развития гипертрофии органа его функция распределяется в увеличенной массе клеточных структур, и в результате объем функции, осуществляемой единицей массы структур, возвращается к нормальному уровню. Вслед за этим активация генетического аппарата прекращается, синтез нуклеиновых кислот и белков возвращается к исходному уровню.

Если устранить гиперфункцию органа, который уже подвергся гипертрофии, то количество функции, выполняемое 1 г ткани, станет ненормально низким. В результате синтез белка в дифференцированных клетках упадет и масса органа начнет уменьшаться. Из-за уменьшения органа количество функции на единицу массы постепенно возрастет, и после того как оно станет нормальным, торможение синтеза белка в клетках органа прекратится – масса его больше не уменьшится.

Эти данные дали основание для представления, что в дифференцированных клетках и образованных ими органах млекопитающих количество функции, выполняемой единицей массы органа (интенсивность функционирования структур – ИФС), играет важную роль в регуляции активности генетического аппарата клетки. Увеличение ИФС соответствует положению, когда функции «тесно» в структуре. Это вызывает активацию синтеза белка и увеличение массы клеточных структур. Снижение данного параметра соответствует ситуации, когда функции слишком «просторно» в структуре, в результате чего снижается интенсивность синтеза с последующим устранением избытка структуры. В обоих случаях ИФС возвращается к некоторой оптимальной величине, свойственной здоровому организму.

Таким образом, внутриклеточный механизм, осуществляющий двустороннюю взаимосвязь между физиологической функцией и генетическим аппаратом дифференцированной клетки, обеспечивает положение, при котором ИФС является одновременно детерминантом активности генетического аппарата и физиологической константой, поддерживаемой на постоянном уровне благодаря своевременным изменениям активности этого аппарата.

Применительно к условиям здорового организма эта закономерность находит свое подтверждение. Исследования показали, что сердечная мышца, непрерывно сокращающаяся в высоком ритме, обладает наибольшей интенсивностью синтеза и наибольшим содержанием РНК, дыхательные мышцы, сокращающиеся в более редком ритме, имеют меньшую концентрацию РНК и меньшую интенсивность синтеза белка. Наконец, скелетные мышцы, сокращающиеся периодически или эпизодически, обладают наименьшей интенсивностью синтеза белка и наименьшим содержанием РНК, несмотря на то что развиваемое ими напряжение значительно больше, чем в миокарде.

Концентрация РНК, соотношение белка и РНК, интенсивность синтеза белка в различных мышцах находятся в прямой зависимости от функции этих мышц; например, в жевательной мышце кролика и диафрагме крысы все эти показатели примерно вдвое выше, чем в икроножной мышце тех же животных. Это зависит от того, что длительность среднесуточного периода активности у жевательной и диафрагмальной мышц значительно больше, чем у икроножной мышцы.

Важным обстоятельством является то, что ИФС как фактор, определяющий активность генетического аппарата, должна измеряться не максимально достижимым уровнем функции (например, не максимальным напряжением мышцы), а средним количеством функции, осуществляемой единицей массы клетки за сутки. При равной длительности среднесуточной активности органов среднесуточная ИФС будет выше у органа, который функционирует на более высоком уровне.

В здоровом организме напряжение, развиваемое миокардом правого желудочка, меньше напряжения левого, а длительность функционирования желудочков в течение суток одинакова. Соответственно, содержание нуклеиновых кислот и интенсивность синтеза белка в миокарде правого желудочка также меньше. Различная интенсивность функционирования структур в разных тканях в процессе онтогенеза влияет на интенсивность синтеза РНК в структурных генах ДНК, и через РНК – на интенсивность синтеза белка. Вместе с тем, она действует более глубоко – определяет количество матриц ДНК в единице массы ткани, т. е. суммарную мощность генетического аппарата клеток, образующих ткань, или количество генов на единицу массы ткани. Это влияние проявляется в том, что количество генов на единицу массы изменяется в различных типах мышечной ткани пропорционально ИФС. Количество генов является одним из факторов, определяющих интенсивность синтеза РНК.

ИФС, складывающаяся в процессе онтогенеза у молодых животных, клетки которых сохранили способность к синтезу ДНК и делению, может определять количество генов на единицу массы ткани и опосредованно – интенсивность синтеза РНК и белка, т. е. совершенство структурного обеспечения функции клеток. Таким образом, взаимосвязь между генетическим аппаратом клетки и функцией (которую мы будем обозначать как взаимосвязь Г ? Ф) является постоянно действующим механизмом внутриклеточной регуляции, реализующимся в клетках органов. На этапе срочной адаптации – при гиперфункции системы, специфически ответственной за адаптацию – реализация Г ? Ф закономерно обеспечивает активацию синтеза нуклеиновых кислот и белков во всех клетках и органах данной функциональной системы. В результате происходит накопление определенных структур – реализуется системный структурный след.

При адаптации к физическим нагрузкам в нейронах моторных центров, надпочечниках, скелетных миоцитах, кардиомиоцитах закономерно возникает активация синтеза нуклеиновых кислот и белков, развиваются выраженные структурные изменения. Эти изменения обеспечивают избирательное увеличение массы и мощности структур, ответственных за управление, ионный транспорт и энергообеспечение.

Умеренная гипертрофия сердца сочетается при адаптации к физическим нагрузкам с повышением активности аденилциклазной системы и увеличением количества адренергических волокон на единицу массы миокарда. В результате адренореактивность сердца и возможность его срочной мобилизации увеличиваются. Одновременно в головках миозина наблюдается увеличение количества Н-цепей, являющихся носителями АТФазной активности.Онавозрастает, иврезультатеувеличиваютсяскорость и амплитуда сокращения сердечной мышцы. Далее нарастает мощность кальциевого насоса СПР и как следствие – скорость и глубина диастолического расслабления сердца. Параллельно в миокарде отмечается увеличение количества коронарных капилляров, повышение концентрации миоглобина и активности ферментов, ответственных за транспорт субстратов к митохондриям, возрастание массы последних. Увеличение мощности системы энергообеспечения закономерно влечет за собой повышение резистентности сердца к утомлению и гипоксемии.

Избирательное увеличение мощности структур, ответственных за управление, ионный транспорт и энергообеспечение, не является оригинальной принадлежностью сердца, оно закономерно реализуется во всех органах, ответственных за адаптацию. В процессе адаптационной реакции органы образуют единую функциональную систему, а развивающиеся в них структурные изменения представляют собой системный структурный след, который составляет основу адаптации.

Системный структурный след в нервной регуляции проявляется в гипертрофии нейронов моторных центров, повышении в них активности дыхательных ферментов; на уровне эндокринной регуляции – в гипертрофии коркового и мозгового вещества надпочечников; на уровне регуляции рабочих органов – в гипертрофии скелетных мышц и увеличении в них количества митохондрий. Последний сдвиг имеет исключительное значение, так как в сочетании с увеличением мощности систем кровообращения и внешнего дыхания он обеспечивает увеличение аэробного потенциала организма, необходимого для интенсивного функционирования аппарата движения. В результате увеличения количества митохондрий рост аэробной мощности организма сочетается с возрастанием способности мышц утилизировать пируват, в повышенных количествах образующийся при нагрузках вследствие активации гликолиза. Это предупреждает повышение концентрации лактата в крови адаптированного организма и тормозит использование жиров. При развитой адаптации увеличение использования пирувата в митохондриях предотвращает увеличение концентрации лактата в крови, обеспечивает мобилизацию и использование в митохондриях жирных кислот и в итоге повышает максимальную интенсивность и длительность работы.

Следовательно, разветвленный структурный след «расширяет» звено, лимитирующее работоспособность организма, и таким образом составляет основу перехода срочной, но ненадежной адаптации в долговременную.

Аналогичным образом происходят формирование системного структурного следа и переход срочной адаптации в долговременную при длительном действии на организм совместимой с жизнью высотной гипоксии. Адаптация к этому фактору характеризуется тем, что первоначальная гиперфункция и последующая активация синтеза нуклеиновых кислот и белков охватывают одновременно многие системы организма и образующийся системный структурный след оказывается более разветвленным, чем при адаптации к другим факторам. Действительно, вслед за гипервентиляцией развиваются активация синтеза нуклеиновых кислот и белков и последующая гипертрофия нейронов дыхательного центра, дыхательной мускулатуры и самих легких, в которых увеличивается количество альвеол. В результате возрастает мощность аппарата внешнего дыхания, дыхательная поверхность легких и коэффициент утилизации кислорода – увеличивается экономичность функции дыхания. В системе кроветворения активация синтеза нуклеиновых кислот и белков в костном мозге становится причиной увеличенного образования эритроцитов и полицитемии, что обеспечивает рост кислородной емкости крови. Наконец, активация синтеза нуклеиновых кислот и белков в правых и, в меньшей мере, левых отделах сердца обеспечивает развитие комплекса изменений, сходных с теми, которые возникают при адаптации к физическим нагрузкам. В результате функциональные возможности сердца, и особенно его резистентность к гипоксемии, возрастают.

Синтез активируется также в системах, функция которых не повышена, а нарушена дефицитом кислорода, и прежде всего в коре и нижележащих отделах головного мозга. Эта активация вызывается дефицитом АТФ, так как реализуется взаимосвязь Г ? Ф. Активация синтеза нуклеиновых кислот и белков, развивающаяся под влиянием гипоксии мозга, становится основой роста сосудов, стационарного увеличения активности гликолиза и, таким образом, вносит свой вклад в формирование системного структурного следа, составляющего основу адаптации к гипоксии. Итог формирования этого состоит в том, что адаптированные люди приобретают возможность осуществлять в условиях недостатка кислорода такую физическую и интеллектуальную активность, которая исключена для неадаптированных. В известном примере при подъеме в барокамере на высоту 7000 м хорошо адаптированные аборигены Анд могли играть в шахматы, а неадаптированные жители равнин теряли сознание.

При адаптации к некоторым факторам системный структурный след оказывается пространственно весьма ограниченным – он локализован в определенных органах. Так, при адаптации к возрастающим дозам ядов закономерно развивается активация синтеза нуклеиновых кислот и белков в печени. Результатом является увеличение мощности системы микросомального окисления, в которой главную роль играет цитохром Р-450. Системный структурный след может проявляться увеличением массы печени, он составляет основу адаптации, которая выражается в том, что резистентность организма к таким ядам, как барбитураты, морфий, алкоголь, никотин, существенно возрастает.

Влияние мощности системы микросомального окисления на резистентность организма к химическим факторам весьма велико. Показано, что после курения одной стандартной папиросы концентрация никотина в крови у некурящих в 10 – 12 раз выше, чем у курящих (у которых мощность системы микросомального окисления увеличена и на этой основе сформировалась адаптация к никотину). С помощью химических факторов, ингибирующих систему микросомального окисления, можно снизить резистентность организма к любым химическим веществам, в частности к наркотикам, а с помощью факторов, индуцирующих увеличение мощности микросомального окисления, можно, напротив, повысить резистентность. Продемонстрирована возможность перекрестной адаптации на уровне системы микросомального окисления в печени. Мощность этой системы является одним из факторов, влияющих на уровень холестерина в крови и, следовательно, на вероятность развития атеросклероза.

Таким образом, намечается перспектива индуцированного увеличения мощности системы микросомального окисления для профилактики заболеваний, связанных с избыточным накоплением в организме определенного эндогенного метаболита. Эта задача решается на основе пространственно ограниченного, локализованного в печени системного структурного следа.

Мы видим, что системный структурный след составляет общую основу различных долговременных реакций организма, но при этом в основе адаптации к различным факторам среды лежат системные структурные следы различной локализации и архитектуры.

Взаимосвязь функции и генетического аппарата – основа формирования системного структурного следа. При рассмотрении взаимосвязи Г ? Ф целесообразно вначале оценить основные черты, характеризующие реализацию этого явления, а затем сам механизм, за счет которого функция влияет на активность генетического аппарата дифференцированной клетки. Эти общие закономерности рассматриваются на примере жизненно важного органа – сердца.

1. Реакция генетического аппарата дифференцированной клетки на длительное непрерывное увеличение функции – стадийный процесс.

Выделяют четыре стадии, наиболее четко проявляющиеся при непрерывной компенсаторной гиперфункции внутренних органов, но иногда прослеживающиеся и при мобилизации функции факторами внешней среды.

В первой, аварийной, стадии увеличение ИФС мобилизует функциональный резерв, например, включает в функцию все актомиозиновые генерирующие силу мостики в кардиомиоцитах сердца, все нефроны почки или все альвеолы легкого. При этом расход АТФ на функцию превосходит ее ресинтез и развивается выраженный дефицит АТФ, нередко сопровождающийся лабилизацией лизосом, повреждением клеточных структур и явлениями функциональной недостаточности органа.

Во второй, переходной, стадии активация генетического аппарата вызывает увеличение массы клеточных структур и органов. Темп этого процесса высок даже в высокодифференцированных клетках и органах. Рост органа означает распределение увеличенной функции в возросшей массе, т. е. снижение ИФС. Одновременно восстанавливается функциональный резерв, содержание АТФ начинает приближаться к норме. В результате уменьшения ИФС и восстановления концентрации АТФ скорость транскрипции всех видов РНК снижается. Таким образом, скорость синтеза белка и рост органа замедляются.

Третья стадия — устойчивой адаптации — характеризуется увеличением массы органа до стабильного уровня. Величина ИФС, функциональный резерв, концентрация АТФ приближаются к норме. Активность генетического аппарата находится на уровне, необходимом для обновления увеличенной массы клеточных структур.

Четвертая стадия — изнашивания и «локального старения» – реализуется при интенсивной длительной нагрузке и при повторных нагрузках, когда орган или система поставлены перед необходимостью многократно проходить стадийный процесс. В условиях чрезмерно напряженной адаптации или повторных адаптаций способность генетического аппарата создавать все новые и новые порции РНК может оказаться исчерпанной. В результате в гипертрофированных клетках системы или органа развивается снижение скорости синтеза РНК и белка. В итоге нарушения обновления структур нарастает гибель части клеток, и они замещаются соединительной тканью, т. е. развивается системный или органный склероз и выраженная функциональная недостаточность.

Возможность перехода от адаптационной гиперфункции к функциональной недостаточности доказана для компенсаторной гипертрофии сердца, печени, гиперфункции нервных центров и гипофизарно-адреналового комплекса при длительном действии сильных раздражителей, гиперфункции секреторных желез желудка при длительном действии гастрина.

Таким образом, в этой стадии речь идет о превращении адаптационной реакции в патологическую. Этот наблюдающийся в самых различных ситуациях общий патогенетический механизм обозначается как локальное изнашивание доминирующих в адаптации систем; локальное изнашивание такого рода нередко имеет широкие генерализованные последствия для организма. Стадийность реакции генетического аппарата клетки при повышенном уровне ее функции является важной закономерностью реализации взаимосвязи Г ? Ф, которая составляет основу стадийности адаптационного процесса в целом.

2. Взаимосвязь Г ? Ф – автономный, филогенетически древний механизм внутриклеточной саморегуляции. Этот механизм в условиях целого организма корригируется нейроэндокринными факторами, но может реализоваться и без их участия. Степень программированности рибосом информационными РНК и способность их синтезировать белок возрастают уже через час после увеличения нагрузки на изолированное сердце. Иными словами, в условиях изоляции, как и в условиях целого организма, увеличение сократительной функции кардиомиоцитов быстро влечет за собой ускорение процесса транскрипции, транспорт образовавшейся информационной РНК в рибосомы и увеличение синтеза белка, составляющее структурное обеспечение увеличенной функции.

3. Активация синтеза нуклеиновых кислот и белков при увеличении функции клеток не зависит от увеличенного поступления в клетку исходных продуктов синтеза. В экспериментах, выполненных на изолированном сердце, показано, что при избытке субстратов окисления нагрузка на сердце вызывает активацию синтеза нуклеиновых кислот и белков. В условиях целого организма в начальной стадии компенсаторной гиперфункции сердца, вызванной сужением аорты и закономерно сопровождающейся активацией синтеза РНК и белка, концентрация аминокислот в кардиомиоцитах не отличается от контроля. Следовательно, возросшая функция активирует генетический аппарат не через увеличенное поступление в клетки аминокислот и субстратов окисления.

4. Показателем функции, определяющим активность генетического аппарата, является параметр, от которого зависит расход АТФ в клетке. В условиях целого организма и на изолированном сердце показано, что увеличение амплитуды и скорости изотонических сокращений миокарда, сопровождающееся небольшим увеличением потребления кислорода и расхода АТФ, существенно не влияет на синтез нуклеиновых кислот и белка. Увеличение изометрического напряжения миокарда, обусловленное возросшим сопротивлением движению крови, напротив, сопровождается резким увеличением расхода АТФ и потребления кислорода, что закономерно влечет за собой активацию генетического аппарата клеток.

5. Взаимосвязь Г ? Ф реализуется гетерохронным накоплением структур клетки в ответ на увеличение функции. Гетерохронизм выражается в том, что быстро обновляемые, короткоживущие белки мембран сарколеммы, СПР и митохондрий накапливаются быстрее, а медленно обновляемые, длительно живущие сократительные белки миофибрилл – медленнее. В результате в начальной стадии гиперфункции сердца обнаруживается увеличение активности основных дыхательных ферментов и количества митохондрий, а также мембранных структур, выделяемых в микросомальной фракции на единицу массы миокарда. Аналогичное явление доказано в нейронах, клетках почек, печени и др. органов.

Если нагрузка на орган и его функция находятся в пределах физиологического оптимума, то это избирательное увеличение массы и мощности мембранных структур, ответственных за ионный транспорт, может закрепиться; при чрезмерной нагрузке рост миофибрилл приводит к тому, что удельный вес этих структур в клетке становится нормальным или даже уменьшенным. При всех условиях опережающее увеличение массы структур, ответственных за транспорт ионов и энергообеспечение, играет важную роль в развитии долговременной адаптации. Эта роль определяется тем, что при большой нагрузке увеличение функции миоцита лимитировано, во-первых, недостаточной мощностью мембранных механизмов, ответственных за своевременное удаление из саркоплазмы Са2+, поступающего туда при каждом цикле возбуждения, и, во-вторых, недостаточной мощностью механизмов ресинтеза АТФ, в увеличенном количестве расходуемой при каждом сокращении. Опережающее, избирательное увеличение массы мембран, ответственных за транспорт ионов и митохондрий, осуществляющих ресинтез АТФ, «расширяет» звено, лимитирующее функцию, и становится основой устойчивой долговременной адаптации.

6. Реализация Г ? Ф в высокодифференцированных кардиомиоцитах осуществляется так, что увеличение функции приводит к повышению скорости считывания РНК с имеющихся генов, репликации ДНК, увеличению количества хромосомных наборов и заключенных в них генов.

По мере физиологического роста в сердце у высших обезьян и человека в результате синтеза ДНК увеличивается плоидность ядер гипертрофированных кардиомиоцитов. Так, у ребенка с массой сердца 150 г 45 % ядер мышечных клеток содержат диплоидные количества ДНК, а 47 % – тетраплоидные. У взрослого человека при массе сердца 250 – 500 г диплоидных ядер всего 20 %, 40 % содержат октаплоидные и 16-плоидные количества ДНК. При выраженной компенсаторной гипертрофии, когда масса сердца составляет 500 – 700 г, доля октаплоидных и 16-плоидных ядер достигает 60 – 90 %. Следовательно, кардиомиоциты человека в течение всей жизни сохраняют способность осуществлять репликацию ДНК и увеличивать число локализованных в ядре геномов. Это обеспечивает обновление возросшей территории гипертрофированной клетки и, возможно, составляет предпосылку для деления некоторых полиплоидных ядер и даже самих клеток.

Физиологическое значение полиплоидизации состоит в том, что она обеспечивает увеличение количества структурных генов, на которых транскрибируются информационные РНК, являющиеся матрицей для синтеза мембранных, митохондриальных, сократительных и др. индивидуальных белков. В дифференцированных клетках животных структурные гены уникальны, в генетическом наборе имеется несколько генов, кодирующих данный белок, например гены, кодирующие синтез гемоглобина в генетическом наборе эритробласта. В полиплоидных клетках увеличено число уникальных генов в той же мере, что и число генетических наборов.

В условиях увеличения функции возросшие требования к синтезу определенных белков и соответствующих им информационных РНК могут быть удовлетворены многочисленными геномами полиплоидной клетки не только за счет увеличения интенсивности считывания с каждого структурного гена, но и за счет увеличения количества этих генов. В результате открываются возможности б?льшей активации транскрипции и, соответственно, б?льшего роста клетки при менее интенсивной эксплуатации каждой генетической матрицы.

Рассмотренные черты взаимосвязи Г ? Ф не являются ее исчерпывающим описанием, но дают возможность поставить основной вопрос, относящийся к самому существу этого регуляторного механизма, а именно: каким образом ИФС регулирует активность генетического аппарата клетки? Этот процесс наиболее эффективно можно рассмотреть на примере деятельности сердца, так как долговременная его адаптация к меняющейся нагрузке является предметом пристального внимания кардиологии.

Применительно к кардиомиоцитам вопрос может быть конкретизирован так: каким образом увеличение напряжения миофибрилл активирует расположенный в ядре генетический аппарат? При действии на организм различных раздражителей, требующих двигательной реакции, а также при действии гипоксии, холода и эмоциональных напряжений нейрогормональная регуляция и авторегуляция сердца мгновенно обеспечивают увеличение сократительной функции. В результате использование АТФ в кардиомиоцитах возрастает и в течение некоторого короткого времени опережает ресинтез АТФ в митохондриях. Это приводит к тому, что концентрация богатых энергией фосфорных соединений в кардиомиоцитах снижается, а концентрация продуктов их распада возрастает. Поскольку АТФ угнетает окислительное фосфорилирование, а продукты ее распада активируют этот процесс, приведенное отношение можно условно обозначить как регулятор фосфорилирования (РФ) и принять, что РФ регулирует скорость ресинтеза АТФ в митохондриях.

Представленная схема цитологического звена долговременной адаптации демонстрирует, что нагрузка и увеличение функции кардиомиоцитов означают снижение концентрации КрФ и АТФ, и что возникшее увеличение РФ влечет за собой усиление ресинтеза АТФ в их митохондриях. В результате концентрация АТФ стабилизируется на определенном уровне, энергетический баланс миоцитов восстанавливается. Энергетическое обеспечение срочной адаптации оказывается достигнутым.

Главный момент схемы, который делает возможным понимание не только срочной, но и долговременной адаптации, состоит в том, что тот же параметр РФ приводит в действие другой, более сложный контур регуляции: опосредованно через промежуточное звено, обозначенное как «фактор-регулятор», он контролирует активность генетического аппарата клетки – определяет скорость синтеза нуклеиновых кислот и белков. Иными словами, при нагрузке увеличение функции снижает концентрацию АТФ, величина РФ возрастает, и этот сдвиг через промежуточные звенья регуляции активирует синтез нуклеиновых кислот и белков, т. е. приводит к росту структур сердечной мышцы. Снижение функции ведет к противоположному результату. Такая связь между функцией и генетическим аппаратом – конструкция ключевого звена долговременной адаптации – не является индивидуальной принадлежностью сердца. Роль дефицита энергии в активации генетического аппарата показана в клетках различных органов: скелетных мышцах, нейронах, почках и т. д.

Энергетический баланс клетки через концентрацию богатых энергией фосфорных соединений и продукты их распада регулирует не только синтез АТФ, но и активность генетического аппарата клетки, т. е. образование клеточных структур. В соответствии с общим принципом жесткой структурной организации регуляторных механизмов организма и каждой его клетки представляется, что отношение АТФ и продуктов ее распада регулирует активность генетического аппарата через определенный метаболит-регулятор. Этот молекулярный сигнал, отражающий уровень функции, снимает физиологическую репрессию структурных генов в хромосомах клеточного ядра и таким образом активирует транскрипцию информационной, а затем рибосомной РНК и, как следствие, трансляцию белков. В ответ на увеличение функции раньше и в наибольшей степени происходят биосинтез и накопление короткоживущих мембранных белков. Транскриптоны, кодирующие синтез ключевых белков клетки, за счет наибольшего сродства с метаболитом-регулятором или иных особенностей своей конструкции, оказываются доступными для РНК-полимеразы при меньших концентрациях метаболита-регулятора, т. е. при меньших нагрузках их на органы и системы. В результате при повторных умеренных нагрузках развивается избирательное увеличение массы и мощности структур, ответственных за управление, ионный транспорт, энергообеспечение и, как следствие, увеличение функциональной мощности органов и систем, составляющее базу адаптации.

У млекопитающих производное АТФ – циклический аденозинмонофосфат (цАМФ) – является мощным индуктором, способным активировать в клетках процесс транскрипции и увеличивать синтез нуклеиновых кислот и белков. Норадреналин и его аналог изопроторенол, специфически активирующие аденилциклазу, а тем самым синтез цАМФ в условиях целого организма, закономерно вызывают активацию транскрипции и увеличение концентрации РНК в сердечной мышце с последующим развитием гипертрофии сердца. Все другие факторы, вызывающие гипертрофию сердца (холод, физические нагрузки, гипоксия), активируют адренергическую регуляцию сердца, а следовательно, также могут увеличивать образование цАМФ и через этот метаболит-регулятор активировать транскрипцию. После начала гиперфункции сердца, вызванной сужением аорты, в миокарде стимулируется синтез простагландинов, которые, в свою очередь, активируют аденилциклазу; как следствие, в кардиомиоцитах возрастает концентрация цАМФ. При действии на сердце гипоксии возникающий дефицит АТФ, как и при гиперфункции, влечет за собой накопление цАМФ. Последний активирует также РНК-полимеразу и синтез РНК в ядрах кардиомиоцитов.

Содержание АТФ и КФ регулирует активность генетического аппарата и через другие метаболиты. Ион магния представляет собой необходимый кофактор транскрипции и трансляции, в клетках он находится в комплексе с АТФ. При распаде АТФ и уменьшении ее концентрации освобождение ионов магния приводит к активации генетического аппарата клеток, росту клеточных структур и увеличению интенсивности пролиферации фибробластов в культуре; связывание ионов магния избытком АТФ приводит к противоположному результату.

Конструкция регуляторного механизма, через который функция клетки влияет на активность генетического аппарата, реализуется через содержание АТФ и продуктов ее распада. Действие такого метаболита опосредуется через сложную систему регуляторных белков клеточного ядра. Через взаимосвязь Г ? Ф функция клетки детерминирует образование необходимых структур. Таким образом, это является необходимым звеном структурного обеспечения физиологических функций вообще и звеном формирования структурного базиса адаптации в частности.

Данный текст является ознакомительным фрагментом.